Roger D. Kornberg

Roger David Kornberg is a prominent American biochemist and professor of structural biology at Stanford University. In 2006 he was awarded the Nobel Prize in Chemistry for his studies of the molecular basis of eukaryotic transcription.

His research also led to the discovery of the nucleosome, the basic structural unit of eukaryotic chromosomes, comprised of DNA and histone proteins. Viewed with an electron microscope, nucleosomes are bead-like structures along the DNA.

Public Rating
5 points
Academy Rating
541 points
Overall Rating
546 points
Chemist CHEMIST (Biochemist)
Roger Kornberg
Previous Next

Recent Findings From Roger D. Kornberg

Subscribe by RSS

No record yet.

1981 Eli Lilly Award

1982 Passano Award, Passano Foundation

1990 Ciba-Drew Award

1997 Harvey Prize from the Technion – Israel Institute of Technology

2000 Gairdner Foundation International Award

2001 Hope-Seyler Award, Society for Biochemistry and Molecular Biology, Germany

2001 Welch Award in Chemistry

2002 ASBMB-Merck Award

2002 Pasarow Award in Cancer Research

2002 Le Gran Prix Charles-Leopold Mayer

2003 Massry Prize

2005 General Motors Cancer Research Foundation’s Alfred P. Sloan Jr. Prize

2006 Dickson Prize, University of Pittsburgh

2006 Nobel Prize in Chemistry

2006 Louisa Gross Horwitz Prize from Columbia University

1.    Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Liu X, Bushnell DA, Wang D, Calero G, Kornberg RD. Science. 2010; 327 (5962): 206-9
2.    An rtt109-independent role for vps75 in transcription-associated nucleosome dynamics. Selth LA, Lorch Y, Ocampo-Hafalla MT, Mitter R, Shales M, Krogan NJ, Kornberg RD, Svejstrup JQ. Mol Cell Biol. 2009; 29 (15): 4220-34
3.    Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution. Spåhr H, Calero G, Bushnell DA, Kornberg RD. Proc Natl Acad Sci U S A. 2009; 106 (23): 9185-90
4.    Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Wang D, Bushnell DA, Huang X, Westover KD, Levitt M, Kornberg RD. Science. 2009; 324 (5931): 1203-6
5.    A bridge to transcription by RNA polymerase. Kaplan CD, Kornberg RD. J Biol. 2008; 7 (10): 39
6.    The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Kaplan CD, Larsson KM, Kornberg RD. Mol Cell. 2008; 30 (5): 547-56
7.    Chromatin rules. Kornberg RD, Lorch Y. Nat Struct Mol Biol. 2007; 14 (11): 986-8
8.    Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Science. 2007; 318 (5849): 430-3
9.    The molecular basis of eukaryotic transcription (Nobel Lecture). Kornberg R, Angew Chem Int Ed Engl. 2007; 46 (37): 6956-65
10.    The molecular basis of eukaryotic transcription. Kornberg RD, Proc Natl Acad Sci U S A. 2007; 104 (32): 12955-61
11.    Chromatin remodeling by nucleosome disassembly in vitro. Lorch Y, Maier-Davis B, Kornberg RD. Proc Natl Acad Sci U S A. 2006; 103 (9): 3090-3
12.    Head module control of mediator interactions. Takagi Y, Calero G, Komori H, Brown JA, Ehrensberger AH, Hudmon A, Asturias F, Kornberg RD. Mol Cell. 2006; 23 (3): 355-64
13.    Mediator as a general transcription factor. Takagi Y, Kornberg RD. J Biol Chem. 2006; 281 (1): 80-9
14.    Rigid, specific, and discrete gold nanoparticle/antibody conjugates. Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD. J Am Chem Soc. 2006; 128 (8): 2635-40
15.    Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD. Cell. 2006; 127 (5): 941-54
16.    Chromatin remodeling by DNA bending, not twisting. Lorch Y, Davis B, Kornberg RD. Proc Natl Acad Sci U S A. 2005; 102 (5): 1329-32
17.    Defined DNA/nanoparticle conjugates. Ackerson CJ, Sykes MT, Kornberg RD. Proc Natl Acad Sci U S A. 2005; 102 (38): 13383-5
18.    Mediator and the mechanism of transcriptional activation. Kornberg RD, Trends Biochem Sci. 2005; 30 (5): 235-9
19.    Structural basis of eukaryotic gene transcription. Boeger H, Bushnell DA, Davis R, Griesenbeck J, Lorch Y, Strattan JS, Westover KD, Kornberg RD. FEBS Lett. 2005; 579 (4): 899-903
20.    Thiolate ligands for synthesis of water-soluble gold clusters. Ackerson CJ, Jadzinsky PD, Kornberg RD. J Am Chem Soc. 2005; 127 (18): 6550-1
21.    Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Takagi Y, Masuda CA, Chang WH, Komori H, Wang D, Hunter T, Joazeiro CA, Kornberg RD. Mol Cell. 2005; 18 (2): 237-43
22.    Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center. Batada NN, Westover KD, Bushnell DA, Levitt M, Kornberg RD. Proc Natl Acad Sci U S A. 2004; 101 (50): 17361-4
23.    Isolation and assay of the RSC chromatin-remodeling complex from Saccharomyces cerevisiae. Lorch Y, Kornberg RD. Methods Enzymol. 2004: 377 316-22
24.    Purification of defined chromosomal domains. Griesenbeck J, Boeger H, Strattan JS, Kornberg RD. Methods Enzymol. 2004: 375 170-8
25.    Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Mol Cell. 2004; 14 (5): 667-73
26.    Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Bushnell DA, Westover KD, Davis RE, Kornberg RD. Science. 2004; 303 (5660): 983-8
27.    Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Westover KD, Bushnell DA, Kornberg RD. Cell. 2004; 119 (4): 481-9
28.    Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Westover KD, Bushnell DA, Kornberg RD. Science. 2004; 303 (5660): 1014-6
29.    Affinity purification of specific chromatin segments from chromosomal loci in yeast. Griesenbeck J, Boeger H, Strattan JS, Kornberg RD. Mol Cell Biol. 2003; 23 (24): 9275-82
30.    Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Bushnell DA, Kornberg RD. Proc Natl Acad Sci U S A. 2003; 100 (12): 6969-73
31.    Nucleosomes unfold completely at a transcriptionally active promoter. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Mol Cell. 2003; 11 (6): 1587-98
32.    Revised subunit structure of yeast transcription factor IIH (TFIIH) and reconciliation with human TFIIH. Takagi Y, Komori H, Chang WH, Hudmon A, Erdjument-Bromage H, Tempst P, Kornberg RD. J Biol Chem. 2003; 278 (45): 43897-900
33.    A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD. J Biol Chem. 2002; 277 (46): 44202-7
34.    A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML. Proc Natl Acad Sci U S A. 2002; 99 (1): 90-4
35.    Chromatin and transcription: where do we go from here. Kornberg RD, Lorch Y. Curr Opin Genet Dev. 2002; 12 (2): 249-51
36.    Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Bushnell DA, Cramer P, Kornberg RD. Proc Natl Acad Sci U S A. 2002; 99 (3): 1218-22
37.    A multiprotein complex that interacts with RNA polymerase II elongator. Li Y, Takagi Y, Jiang Y, Tokunaga M, Erdjument-Bromage H, Tempst P, Kornberg RD. J Biol Chem. 2001; 276 (32): 29628-31
38.    Quantitation of the RNA polymerase II transcription machinery in yeast. Borggrefe T, Davis R, Bareket-Samish A, Kornberg RD. J Biol Chem. 2001; 276 (50): 47150-3
39.    RSC unravels the nucleosome. Lorch Y, Zhang M, Kornberg RD. Mol Cell. 2001; 7 (1): 89-95
40.    Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. Bushnell DA, Cramer P, Kornberg RD. Structure. 2001; 9 (1): R11-4
41.    Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Cramer P, Bushnell DA, Kornberg RD. Science. 2001; 292 (5523): 1863-76
42.    Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Science. 2001; 292 (5523): 1876-82
43.    The eukaryotic gene transcription machinery. Kornberg RD, Biol Chem. 2001; 382 (8): 1103-7
44.    Architecture of RNA polymerase II and implications for the transcription mechanism. Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD. Science. 2000; 288 (5466): 640-9
45.    Defocus-gradient corrected back-projection. Jensen GJ, Kornberg RD. Ultramicroscopy. 2000; 84 (1-2): 57-64
46.    Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Chang WH, Kornberg RD. Cell. 2000; 102 (5): 609-13
47.    Mediator-nucleosome interaction. Lorch Y, Beve J, Gustafsson CM, Myers LC, Kornberg RD. Mol Cell. 2000; 6 (1): 197-201
48.    Chromatin-modifying and -remodeling complexes. Kornberg RD, Lorch Y. Curr Opin Genet Dev. 1999; 9 (2): 148-51
49.    Conserved structures of mediator and RNA polymerase II holoenzyme. Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD. Science. 1999; 283 (5404): 985-7
50.    Electron crystal structure of an RNA polymerase II transcription elongation complex. Poglitsch CL, Meredith GD, Gnatt AL, Jensen GJ, Chang WH, Fu J, Kornberg RD. Cell. 1999; 98 (6): 791-8
51.    Eukaryotic transcriptional control. Kornberg RD, Trends Cell Biol. 1999; 9 (12): M46-9
52.    Histone octamer transfer by a chromatin-remodeling complex. Lorch Y, Zhang M, Kornberg RD. Cell. 1999; 96 (3): 389-92
53.    Mediator protein mutations that selectively abolish activated transcription. Myers LC, Gustafsson CM, Hayashibara KC, Brown PO, Kornberg RD. Proc Natl Acad Sci U S A. 1999; 96 (1): 67-72
54.    Protein crystallization on lipid layers and structure determination of the RNA polymerase II transcription initiation complex. Asturias FJ, Kornberg RD. J Biol Chem. 1999; 274 (11): 6813-6
55.    Structure of DNA-dependent protein kinase: implications for its regulation by DNA. Leuther KK, Hammarsten O, Kornberg RD, Chu G. EMBO J. 1999; 18 (5): 1114-23
56.    Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Kornberg RD, Lorch Y. Cell. 1999; 98 (3): 285-94
57.    Yeast RNA polymerase II at 5 A resolution. Fu J, Gnatt AL, Bushnell DA, Jensen GJ, Thompson NE, Burgess RR, David PR, Kornberg RD. Cell. 1999; 98 (6): 799-810
58.    Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Lorch Y, Cairns BR, Zhang M, Kornberg RD. Cell. 1998; 94 (1): 29-34
59.    Electron crystallography of yeast RNA polymerase II preserved in vitreous ice. Asturias FJ, Chang W, Li Y, Kornberg RD. Ultramicroscopy. 1998; 70 (3): 133-43
60.    Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Jiang YW, Veschambre P, Erdjument-Bromage H, Tempst P, Conaway JW, Conaway RC, Kornberg RD. Proc Natl Acad Sci U S A. 1998; 95 (15): 8538-43
61.    Mechanism and regulation of yeast RNA polymerase II transcription. Kornberg RD, Cold Spring Harb Symp Quant Biol. 1998: 63 229-32
62.    Repeated tertiary fold of RNA polymerase II and implications for DNA binding. Fu J, Gerstein M, David PR, Gnatt AL, Bushnell DA, Edwards AM, Kornberg RD. J Mol Biol. 1998; 280 (3): 317-22
63.    Single-particle selection and alignment with heavy atom cluster-antibody conjugates. Jensen GJ, Kornberg RD. Proc Natl Acad Sci U S A. 1998; 95 (16): 9262-7
64.    Structure of wild-type yeast RNA polymerase II and location of Rpb4 and Rpb7. Jensen GJ, Meredith G, Bushnell DA, Kornberg RD. EMBO J. 1998; 17 (8): 2353-8
65.    The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Myers LC, Gustafsson CM, Bushnell DA, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD. Genes Dev. 1998; 12 (1): 45-54
66.    Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD. Mol Cell. 1998; 2 (5): 639-51
67.    Evidence for a mediator cycle at the initiation of transcription. Svejstrup JQ, Li Y, Fellows J, Gnatt A, Bjorklund S, Kornberg RD. Proc Natl Acad Sci U S A. 1997; 94 (12): 6075-8
68.    Formation and crystallization of yeast RNA polymerase II elongation complexes. Gnatt A, Fu J, Kornberg RD. J Biol Chem. 1997; 272 (49): 30799-805
69.    Genes for Tfb2, Tfb3, and Tfb4 subunits of yeast transcription/repair factor IIH. Homology to human cyclin-dependent kinase activating kinase and IIH subunits. Feaver WJ, Henry NL, Wang Z, Wu X, Svejstrup JQ, Bushnell DA, Friedberg EC, Kornberg RD. J Biol Chem. 1997; 272 (31): 19319-27
70.    Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. Gustafsson CM, Myers LC, Li Y, Redd MJ, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD. J Biol Chem. 1997; 272 (1): 48-50
71.    Two conformations of RNA polymerase II revealed by electron crystallography. Asturias FJ, Meredith GD, Poglitsch CL, Kornberg RD. J Mol Biol. 1997; 272 (4): 536-40
72.    Yeast RNA polymerase II transcription reconstituted with purified proteins. Myers LC, Leuther K, Bushnell DA, Gustafsson CM, Kornberg RD. Methods. 1997; 12 (3): 212-6
73.    A minimal set of RNA polymerase II transcription protein interactions. Bushnell DA, Bamdad C, Kornberg RD. J Biol Chem. 1996; 271 (33): 20170-4
74.    A yeast transcriptional stimulatory protein similar to human PC4. Henry NL, Bushnell DA, Kornberg RD. J Biol Chem. 1996; 271 (36): 21842-7
75.    Essential role of Swp73p in the function of yeast Swi/Snf complex. Cairns BR, Levinson RS, Yamamoto KR, Kornberg RD. Genes Dev. 1996; 10 (17): 2131-44
76.    RSC, an essential, abundant chromatin-remodeling complex. Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, Kornberg RD. Cell. 1996; 87 (7): 1249-60
77.    Subunits of yeast RNA polymerase II transcription factor TFIIH encoded by the CCL1 gene. Svejstrup JQ, Feaver WJ, Kornberg RD. J Biol Chem. 1996; 271 (2): 643-5
78.    TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Cairns BR, Henry NL, Kornberg RD. Mol Cell Biol. 1996; 16 (7): 3308-16
79.    The C-terminal domain revealed in the structure of RNA polymerase II. Meredith GD, Chang WH, Li Y, Bushnell DA, Darst SA, Kornberg RD. J Mol Biol. 1996; 258 (3): 413-9
80.    Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Leuther KK, Bushnell DA, Kornberg RD. Cell. 1996; 85 (5): 773-9
81.    Yeast RNA polymerase II holoenzyme. Li Y, Bjorklund S, Kim YJ, Kornberg RD. Methods Enzymol. 1996: 273 172-5
82.    A novel method for transfer of two-dimensional crystals from the air/water interface to specimen grids. EM sample preparation/lipid-layer crystallization. Asturias FJ, Kornberg RD. J Struct Biol. 1995 Jan-Feb; 114 (1): 60-6
83.    Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Svejstrup JQ, Wang Z, Feaver WJ, Wu X, Bushnell DA, Donahue TF, Friedberg EC, Kornberg RD. Cell. 1995; 80 (1): 21-8
84.    Interplay between chromatin structure and transcription. Kornberg RD, Lorch Y. Curr Opin Cell Biol. 1995; 7 (3): 371-5
85.    Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Li Y, Bjorklund S, Jiang YW, Kim YJ, Lane WS, Stillman DJ, Kornberg RD. Proc Natl Acad Sci U S A. 1995; 92 (24): 10864-8
86.    A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD. Cell. 1994; 77 (4): 599-608
87.    A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD. Proc Natl Acad Sci U S A. 1994; 91 (5): 1950-4
88.    Epitaxial growth of protein crystals on lipid layers. Edwards AM, Darst SA, Hemming SA, Li Y, Kornberg RD. Nat Struct Biol. 1994; 1 (3): 195-7
89.    Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Li Y, Kornberg RD. Proc Natl Acad Sci U S A. 1994; 91 (6): 2362-6
90.    Isolation of the yeast histone octamer. Lorch Y, Kornberg RD. Proc Natl Acad Sci U S A. 1994; 91 (23): 11032-4
91.    RNA polymerase II initiation factor interactions and transcription start site selection. Li Y, Flanagan PM, Tschochner H, Kornberg RD. Science. 1994; 263 (5148): 805-7
92.    RNA polymerase transcription factor IIH holoenzyme from yeast. Svejstrup JQ, Feaver WJ, LaPointe J, Kornberg RD. J Biol Chem. 1994; 269 (45): 28044-8
93.    Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. Cell. 1994; 79 (6): 1103-9
94.    TFIIF-TAF-RNA polymerase II connection. Henry NL, Campbell AM, Feaver WJ, Poon D, Weil PA, Kornberg RD. Genes Dev. 1994; 8 (23): 2868-78
95.    Yeast TFIIE. Cloning, expression, and homology to vertebrate proteins. Feaver WJ, Henry NL, Bushnell DA, Sayre MH, Brickner JH, Gileadi O, Kornberg RD. J Biol Chem. 1994; 269 (44): 27549-53
96.    A possible role for the yeast TATA-element-binding protein in DNA replication. Lue NF, Kornberg RD. Proc Natl Acad Sci U S A. 1993; 90 (17): 8018-22
97.    Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Feaver WJ, Svejstrup JQ, Bardwell L, Bardwell AJ, Buratowski S, Gulyas KD, Donahue TF, Friedberg EC, Kornberg RD. Cell. 1993; 75 (7): 1379-87
98.    Mechanism and regulation of yeast RNA polymerase II transcription. Sayre MH, Kornberg RD. Cell Mol Biol Res. 1993; 39 (4): 349-54
99.    Near-zero linking difference upon transcription factor IID binding to promoter DNA. Lorch Y, Kornberg RD. Mol Cell Biol. 1993; 13 (3): 1872-5
100.    Chromatin structure and transcription. Kornberg RD, Lorch Y. Annu Rev Cell Biol. 1992: 8 563-87
101.    Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase. Gileadi O, Feaver WJ, Kornberg RD. Science. 1992; 257 (5075): 1389-92
102.    Initiation on chromatin templates in a yeast RNA polymerase II transcription system. Lorch Y, LaPointe JW, Kornberg RD. Genes Dev. 1992; 6 (12A): 2282-7
103.    Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase. Cairns BR, Ramer SW, Kornberg RD. Genes Dev. 1992; 6 (7): 1305-18
104.    Purification and characterization of yeast RNA polymerase II general initiation factor g. Henry NL, Sayre MH, Kornberg RD. J Biol Chem. 1992; 267 (32): 23388-92
105.    Purification and properties of Saccharomyces cerevisiae RNA polymerase II general initiation factor a. Sayre MH, Tschochner H, Kornberg RD. J Biol Chem. 1992; 267 (32): 23383-7
106.    Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. Sayre MH, Tschochner H, Kornberg RD. J Biol Chem. 1992; 267 (32): 23376-82 Simple derivation of TFIID-dependent RNA polymerase II transcription systems from Schizosaccharomyces pombe and other organisms, and factors required for transcriptional activation. Flanagan PM, Kelleher RJ, Tschochner H, Sayre MH, Kornberg RD. Proc Natl Acad Sci U S A. 1992; 89 (16): 7659-63
107.    Yeast RNA polymerase II initiation factor e: isolation and identification as the functional counterpart of human transcription factor IIB. Tschochner H, Sayre MH, Flanagan PM, Feaver WJ, Kornberg RD. Proc Natl Acad Sci U S A. 1992; 89 (23): 11292-6
108.    Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Kelleher RJ, Flanagan PM, Chasman DI, Ponticelli AS, Struhl K, Kornberg RD. Genes Dev. 1992; 6 (2): 296-303
109.    A mediator required for activation of RNA polymerase II transcription in vitro. Flanagan PM, Kelleher RJ, Sayre MH, Tschochner H, Kornberg RD. Nature. 1991; 350 (6317): 436-8
110.    CTD kinase associated with yeast RNA polymerase II initiation factor b. Feaver WJ, Gileadi O, Li Y, Kornberg RD. Cell. 1991; 67 (6): 1223-30
111.    Improved transfer of two-dimensional crystals from the air/water interface to specimen support grids for high-resolution analysis by electron microscopy. Kubalek EW, Kornberg RD, Darst SA. Ultramicroscopy. 1991; 35 (3-4): 295-304
112.    Irresistible force meets immovable object: transcription and the nucleosome. Kornberg RD, Lorch Y. Cell. 1991; 67 (5): 833-6
113.    Purification and characterization of yeast RNA polymerase II transcription factor b. Feaver WJ, Gileadi O, Kornberg RD. J Biol Chem. 1991; 266 (28): 19000-5
114.    Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Darst SA, Edwards AM, Kubalek EW, Kornberg RD. Cell. 1991; 66 (1): 121-8
115.    Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. Edwards AM, Kane CM, Young RA, Kornberg RD. J Biol Chem. 1991; 266 (1): 71-5
116.    Two-dimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II. Darst SA, Kubalek EW, Edwards AM, Kornberg RD. J Mol Biol. 1991; 221 (1): 347-57
117.    Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Darst SA, Ahlers M, Meller PH, Kubalek EW, Blankenburg R, Ribi HO, Ringsdorf H, Kornberg RD. Biophys J. 1991; 59 (2): 387-96
118.    A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Kelleher RJ, Flanagan PM, Kornberg RD. Cell. 1990; 61 (7): 1209-15
119.    A yeast ARS-binding protein activates transcription synergistically in combination with other weak activating factors. Buchman AR, Kornberg RD. Mol Cell Biol. 1990; 10 (3): 887-97
120.    A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Chasman DI, Lue NF, Buchman AR, LaPointe JW, Lorch Y, Kornberg RD. Genes Dev. 1990; 4 (4): 503-14
121.    Accurately initiated, enhancer-dependent transcription by RNA polymerase I in yeast extracts. Lue NF, Kornberg RD. J Biol Chem. 1990; 265 (30): 18091-4
122.    GAL4 protein: purification, association with GAL80 protein, and conserved domain structure. Chasman DI, Kornberg RD. Mol Cell Biol. 1990; 10 (6): 2916-23
123.    Interchangeable RNA polymerase I and II enhancers. Lorch Y, Lue NF, Kornberg RD. Proc Natl Acad Sci U S A. 1990; 87 (21): 8202-6
124.    Purification and lipid-layer crystallization of yeast RNA polymerase II. Edwards AM, Darst SA, Feaver WJ, Thompson NE, Burgess RR, Kornberg RD. Proc Natl Acad Sci U S A. 1990; 87 (6): 2122-6
125.    Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. Flanagan PM, Kelleher RJ, Feaver WJ, Lue NF, LaPointe JW, Kornberg RD. J Biol Chem. 1990; 265 (19): 11105-7
126.    Activation of yeast RNA polymerase II transcription by a thymidine-rich upstream element in vitro. Lue NF, Buchman AR, Kornberg RD. Proc Natl Acad Sci U S A. 1989; 86 (2): 486-90
127.    Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivatives in vitro. Chasman DI, Leatherwood J, Carey M, Ptashne M, Kornberg RD. Mol Cell Biol. 1989; 9 (11): 4746-9
128.    Initiation by yeast RNA polymerase II at the adenoviral major late promoter in vitro. Lue NF, Flanagan PM, Sugimoto K, Kornberg RD. Science. 1989; 246 (4930): 661-4
129.    Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Darst SA, Kubalek EW, Kornberg RD. Nature. 1989; 340 (6236): 730-2
130.    Upstream activation sequence-dependent alteration of chromatin structure and transcription activation of the yeast GAL1-GAL10 genes. Fedor MJ, Kornberg RD. Mol Cell Biol. 1989; 9 (4): 1721-32
131.    Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Buchman AR, Lue NF, Kornberg RD. Mol Cell Biol. 1988; 8 (12): 5086-99
132.    On the displacement of histones from DNA by transcription. Lorch Y, LaPointe JW, Kornberg RD. Cell. 1988; 55 (5): 743-4
133.    Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Kornberg RD, Stryer L. Nucleic Acids Res. 1988; 16 (14A): 6677-90
134.    Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. Fedor MJ, Lue NF, Kornberg RD. J Mol Biol. 1988; 204 (1): 109-27
135.    Three-dimensional structure of cholera toxin penetrating a lipid membrane. Ribi HO, Ludwig DS, Mercer KL, Schoolnik GK, Kornberg RD. Science. 1988; 239 (4845): 1272-6
136.    Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Buchman AR, Kimmerly WJ, Rine J, Kornberg RD. Mol Cell Biol. 1988; 8 (1): 210-25
137.    Two-dimensional crystals of Escherichia coli RNA polymerase holoenzyme on positively charged lipid layers. Darst SA, Ribi HO, Pierce DW, Kornberg RD. J Mol Biol. 1988; 203 (1): 269-73
138.    A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Sachs AB, Davis RW, Kornberg RD. Mol Cell Biol. 1987; 7 (9): 3268-76
139.    Accurate initiation at RNA polymerase II promoters in extracts from Saccharomyces cerevisiae. Lue NF, Kornberg RD. Proc Natl Acad Sci U S A. 1987; 84 (24): 8839-43
140.    Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Lue NF, Chasman DI, Buchman AR, Kornberg RD. Mol Cell Biol. 1987; 7 (10): 3446-51
141.    Two-dimensional crystals of enzyme-effector complexes: ribonucleotide reductase at 18-A resolution. Ribi HO, Reichard P, Kornberg RD. Biochemistry. 1987; 26 (24): 7974-9



Videos of Roger D. Kornberg



Photos of Roger D. Kornberg

Comments are closed.

  • Postings

    Professor structural biology at Stanford University School of Medicine.